Questão	C	E	Questão	С	E
1		X	51	X	
2		X	52	X	
3		X	53	X	
4		X	54		X
5		X	55		X
6	X		56	X	
7	X		57		X
8	X		58		X
9	X		59		X
10		X	60		X
11		X	61		X
12	X		62	X	
13		X	63	X	
14	X		64	X	
15		X	65	X	
16	X		66	X	
17		X	67		X
18	X		68		X
19	X		69	X	
20		X	70	X	
21		X	71	X	
22		X	72		X
23		X	73	X	
24		X	74		X
25		X	75		X
26		X	76	X	
27	X		77		X
28	X		78		X
29		X	79	X	
30		X	80	X	
31	X		81		X
32	X		82	X	
33	X		83		X
34		X	84	X	
35	X		85	X	
36	X		86		X
37		X	87		X
38		X	88		X
39	X		89	X	
40		X	90		X
41	X		91	anul	lado
42		X	92	X	
43		X	93	X	
44	X		94		X
45		X	95		X
46		X	96	X	
47	X		97	X	
48	X		98		X
49	X		99	X	
50	X		100		X

Gabarito questões subjetivas

QUESTÃO 1)

- a) Para que o balão da figura I suba é necessário uma chama para aquecer o ar. Isto ocorre porque, com o aumento da temperatura, as moléculas dos gases ficam mais excitadas e, assim, se expandem, afastando-se mais umas das outras. Uma vez que a densidade é definida pela massa por unidade de volume, o ar aquecido dentro do balão, com suas moléculas bem afastadas, tem uma densidade menor que o ar atmosférico. Logo, o balão tende a subir, pois o menos denso sobe em relação ao mais denso.
- b) Controlar a chama dentro do balão para resfriar o ar lentamente, aumentando aos poços sua densidade. Assim, o balão irá parar de subir e logo começará a descer à medida que sua densidade aumenta.
- c) Não.
 - 1. Se ele sobe, significa que o gás dentro dele é menos denso que o ar atmosférico. Logo, os balões subirão enquanto o ar da atmosfera for mais denso. Em grandes altitudes, as densidades serão equivalentes e os balões deixarão de subir.

Ou

2. Em grandes altitudes, a pressão dentro do balão será maior que a pressão atmosférica, assim o balão estourará.

QUESTÃO 2)

Deve-se calcular as massas molares da glicose (180 g.mol⁻¹) e do etanol (46 g.mol⁻¹) A densidade do EtOH foi dada (0,789 g.mL⁻¹)

1º Passo) Balancear a equação química em

$$glicose \rightarrow 2 \ etanol + 2CO_2$$

2º Passo) A partir da densidade, descobrir a massa de EtOH a partir da necessidade diária:

$$d = \frac{m}{V} \Rightarrow m = d \cdot V \Rightarrow m = 789 \cdot 10^6 g \; de \; et anol/dia$$

3º Passo) Descobrir a quantidade de matéria de EtOH

$$n = \frac{m}{M} = 17,152 \cdot 10^6 \text{ mol de EtOH por dia}$$

4º Passo) Cálculo estequiométrico: Quanta glicose é necessária para produção dessa quantidade de EtOH?

$$\frac{1~C_6H_{12}O_6}{2~C_2H_5OH} = \frac{n(glicose)}{17,152\cdot 10^6~mol} \Rightarrow n(glicose) = 8,576\cdot 10^6~mol~de~glicose/dia$$

5º Passo) Descobrir a massa de glicose necessária por dia

$$n = \frac{m}{M} \Rightarrow m = nM \Rightarrow m(glicose) = 1,54368 \cdot 10^6 \ kg \ de \ glicose/dia$$

6º Passo) Achar a necessidade de 4 meses:

Multiplica-se o valor diário por 120 (4 meses) e encontra-se 185,2416.106 kg

7º Passo) Determinar a massa de cana de açúcar que é utilizada para produzir essa quantidade de glicose:

$$\frac{10^3 kg}{160 \ kg} = \frac{m(cana)}{185,2416 \cdot 10^6 \ kg} \Rightarrow m(cana) = 11,5776 \cdot 10^8 \ kg = 11,5776 \cdot 10^5 \ toneladas$$

8º Passo) A partir da produtividade média calcular a área que deve ser plantada:

$$\frac{85\ toneladas}{1\ hectare} = \frac{11,5776\cdot 10^5\ toneladas}{A} \Rightarrow A \cong 13620,7\ ha \cong 1,362\cdot 10^8\ m^2$$

QUESTÃO 3)

QUESTÃO 4)

- Água, amônia e fluoreto de hidrogênio realizam ligações de hidrogênio e isso contribui enormemente para o aumento do ponto de ebulição;
- O metano, por sua vez, é um composto apolar cujas moléculas interagem fracamente entre si devido a sua pouca polarizabilidade (interação dipolo induzido-dipolo induzido fraca);
- Os demais pontos de ebulição aumentam conforme aumenta-se a quantidade de elétrons do composto – aumenta-se a polarizabilidade e com isso as interações do tipo dipolo induzido-dipolo induzido são mais fortes.

QUESTÃO 5)

Observa-se nos pontos:

- A: Água no estado sólido (gelo)
- B: Água Liquida (liquido)
- C: Água no estado Vapor
 - D: Ponto tríplice da água. Equilíbrio entre as fases sólido, liquido e vapor.
- E: Equilíbrio entre as fases sólido e liquido. Ponto de fusão ou congelamento a determinada pressão e temperatura.
- F: Equilíbrio entre as fases sólida e vapor da água.
- G: Equilíbrio entre as fases liquido e vapor. Ponto de ebulição a determinada pressão e temperatura.